3.49 \(\int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=66 \[ -\frac {3 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}} \]

[Out]

-3*a^(3/2)*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/d-a^2*cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2762, 21, 2773, 206} \[ -\frac {a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {3 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + d*x]^2*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(-3*a^(3/2)*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/d - (a^2*Cot[c + d*x])/(d*Sqrt[a + a*Sin
[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2762

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c
+ a*d)), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*
Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
&& (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \csc ^2(c+d x) (a+a \sin (c+d x))^{3/2} \, dx &=-\frac {a^2 \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}-a \int \frac {\csc (c+d x) \left (-\frac {3 a}{2}-\frac {3}{2} a \sin (c+d x)\right )}{\sqrt {a+a \sin (c+d x)}} \, dx\\ &=-\frac {a^2 \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}+\frac {1}{2} (3 a) \int \csc (c+d x) \sqrt {a+a \sin (c+d x)} \, dx\\ &=-\frac {a^2 \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}-\frac {\left (3 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}\\ &=-\frac {3 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{d}-\frac {a^2 \cot (c+d x)}{d \sqrt {a+a \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.65, size = 180, normalized size = 2.73 \[ -\frac {a \csc ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\sin (c+d x)+1)} \left (-2 \sin \left (\frac {1}{2} (c+d x)\right )+2 \cos \left (\frac {1}{2} (c+d x)\right )+3 \sin (c+d x) \left (\log \left (-\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )+1\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )-\cos \left (\frac {1}{2} (c+d x)\right )+1\right )\right )\right )}{d \left (\cot \left (\frac {1}{2} (c+d x)\right )+1\right ) \left (\csc \left (\frac {1}{4} (c+d x)\right )-\sec \left (\frac {1}{4} (c+d x)\right )\right ) \left (\csc \left (\frac {1}{4} (c+d x)\right )+\sec \left (\frac {1}{4} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + d*x]^2*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

-((a*Csc[(c + d*x)/2]^4*Sqrt[a*(1 + Sin[c + d*x])]*(2*Cos[(c + d*x)/2] - 2*Sin[(c + d*x)/2] + 3*(Log[1 + Cos[(
c + d*x)/2] - Sin[(c + d*x)/2]] - Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]])*Sin[c + d*x]))/(d*(1 + Cot[(c
+ d*x)/2])*(Csc[(c + d*x)/4] - Sec[(c + d*x)/4])*(Csc[(c + d*x)/4] + Sec[(c + d*x)/4])))

________________________________________________________________________________________

fricas [B]  time = 0.46, size = 268, normalized size = 4.06 \[ \frac {3 \, {\left (a \cos \left (d x + c\right )^{2} - {\left (a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) - a\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, {\left (a \cos \left (d x + c\right ) - a \sin \left (d x + c\right ) + a\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{4 \, {\left (d \cos \left (d x + c\right )^{2} - {\left (d \cos \left (d x + c\right ) + d\right )} \sin \left (d x + c\right ) - d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2*(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/4*(3*(a*cos(d*x + c)^2 - (a*cos(d*x + c) + a)*sin(d*x + c) - a)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x
+ c)^2 - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sq
rt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d
*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 4*(a*cos(d*x + c) - a*sin(d*x + c) + a)*s
qrt(a*sin(d*x + c) + a))/(d*cos(d*x + c)^2 - (d*cos(d*x + c) + d)*sin(d*x + c) - d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2*(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.74, size = 103, normalized size = 1.56 \[ -\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \sqrt {a}\, \left (3 \arctanh \left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right ) a \sin \left (d x +c \right )+\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {a}\right )}{\sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(d*x+c)^2*(a+a*sin(d*x+c))^(3/2),x)

[Out]

-(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*a^(1/2)*(3*arctanh((a-a*sin(d*x+c))^(1/2)/a^(1/2))*a*sin(d*x+c)+(a-a
*sin(d*x+c))^(1/2)*a^(1/2))/sin(d*x+c)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \csc \left (d x + c\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)^2*(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(d*x + c) + a)^(3/2)*csc(d*x + c)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}}{{\sin \left (c+d\,x\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(c + d*x))^(3/2)/sin(c + d*x)^2,x)

[Out]

int((a + a*sin(c + d*x))^(3/2)/sin(c + d*x)^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(d*x+c)**2*(a+a*sin(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________